Modification of potassium channel kinetics by histidine-specific reagents
نویسندگان
چکیده
We have examined the actions of histidine-specific reagents on potassium channels in squid giant axons. External application of 20-500 microM diethylpyrocarbonate (DEP) slowed the opening of potassium channels with little or no effect on closing rates. Sodium channels were not affected by these low external concentrations of DEP. Internal application of up to 2 mM DEP had no effect on potassium channel kinetics. Steady-state potassium channel currents were reduced in an apparently voltage-dependent manner by external treatment with this reagent. The shape of the instantaneous current-voltage relation was not altered. The voltage-dependent probability of channel opening was shifted toward more positive membrane potentials, thus accounting for the apparent voltage-dependent reduction of steady-state current. Histidine-specific photo-oxidation catalyzed by rose bengal produced alterations in potassium channel properties similar to those observed with DEP. The rate of action of DEP was consistent with a single kinetic class of histidine residues. In contrast to the effects on ionic currents, potassium channel gating currents were not modified by treatment with DEP. These results suggest the existence of a histidyl group (or groups) on the external surface of potassium channels important for a weakly voltage-dependent conformational transition. These effects can be reproduced by a simple kinetic model of potassium channels.
منابع مشابه
Modification of potassium channel kinetics by amino group reagents
We have examined the actions of several amino group reagents on delayed rectifier potassium channels in squid giant axons. Three general classes of reagents were used: (1) those that preserved the positive charge of amino groups; (2) those that neutralize the charge; and (3) those that replace the positive with a negative charge. All three types of reagents produced qualitatively similar effect...
متن کاملSingle-channel currents from diethylpyrocarbonate-modified NMDA receptors in cultured rat brain cortical neurons
The role of histidine residues in the function of N-methyl-D-aspartate (NMDA)-activated channels was tested with the histidine-modifying reagent diethylpyrocarbonate (DEP) applied to cells and membrane patches from rat brain cortical neurons in culture. Channels in excised outside-out patches that were treated with 3 mM DEP for 15-30 s (pH 6.5) showed an average 3.4-fold potentiation in steady ...
متن کاملRemoval of sodium channel inactivation in squid giant axons by n- bromoacetamide
The group-specific protein reagents, N-bromacetamide (NBA) and N-bromosuccinimide (NBS), modify sodium channel gating when perfused inside squid axons. The normal fast inactivation of sodium channels is irreversibly destroyed by 1 mM NBA or NBS near neutral pH. NBA apparently exhibits an all-or-none destruction of the inactivation process at the single channel level in a manner similar to inter...
متن کاملRemo, al of Sodium Channel Inactivation in Squid Giant Axons by N-Bromoacetamide
The group-specific protein reagents, N-bromoacetamide (NBA) and N-bromosuccinimide (NBS), modify sodium channel gating when perfused inside squid axons. The normal fast inactivation of sodium channels is irreversibly destroyed by 1 mM NBA or NBS near neutral pH. NBA apparently exhibits an allor-none destruction of the inactivation process at the single channel level in a manner similar to inter...
متن کاملN-type inactivation and the S4-S5 region of the Shaker K+ channel
The intracellular segment of the Shaker K+ channel between transmembrane domains S4 and S5 has been proposed to form at least part of the receptor for the tethered N-type inactivation "ball." We used the approach of cysteine substitution mutagenesis and chemical modification to test the importance of this region in N-type inactivation. We studied N-type inactivation or the block by a soluble in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 96 شماره
صفحات -
تاریخ انتشار 1990